126 research outputs found

    Six-wave systems in one-dimensional wave turbulence

    Get PDF
    We investigate one-dimensional (1D) wave turbulence (WT) systems that are characterised by six-wave interactions. We begin by presenting a brief introduction to WT theory - the study of the non-equilibrium statistical mechanics of nonlinear random waves, by giving a short historical review followed by a discussion on the physical applications. We implement the WT description to a general six-wave Hamiltonian system that contains two invariants, namely, energy and wave action. This enables the subsequent derivations for the evolutions equations of the one-mode amplitude probability density function (PDF) and kinetic equation (KE). Analysis of the stationary solutions of these equations are made with additional checks on their underlying assumptions for validity. Moreover, we derive a differential approximation model (DAM) to the KE for super-local wave interactions and investigate the possible occurrence of a fluctuation relation. We then consider these results in the context of two physical systems - Kelvin waves in quantum turbulence (QT) and optical wave turbulence (OWT). We discuss the role of Kelvin waves in decaying QT, and show that they can be described by six-wave interactions. We explicitly compute the interaction coefficients for the Biot-Savart equation (BSE) Hamiltonian and represent the Kelvin wave dynamics in the form of a KE. The resulting non-equilibrium Kolmogorov-Zakharov (KZ) solutions to the KE are shown to be non-local, thus a new non-local theory for Kelvin wave interactions is discussed. A local equation for the dynamics of Kelvin waves, the local nonlinear equation (LNE), is derived from the BSE in the asymptotic limit of one long Kelvin wave. Numerical computation of the LNE leads to an agreement with the nonlocal Kelvin wave theory. Finally, we consider 1D OWT. We present the first experimental implementation of OWT and provide a comparable decaying numerical simulation for verification. We show that 1D OWT is described by a six-wave process and that the inverse cascade state leads to the development of coherent solitons at large scales. Further investigation is conducted into the behaviour of solitons and their impact to the WT description. Analysis of the fluxes and intensity PDFs lead to the development of a wave turbulence life cycle (WTLC), explaining the coexistence between coherent solitons and incoherent waves. Additional numerical simulations are performed in non-equilibrium stationary regimes to determine if a pure KZ state can be realised

    Six-wave systems in one-dimensional wave turbulence

    Get PDF
    We investigate one-dimensional (1D) wave turbulence (WT) systems that are characterised by six-wave interactions. We begin by presenting a brief introduction to WT theory - the study of the non-equilibrium statistical mechanics of nonlinear random waves, by giving a short historical review followed by a discussion on the physical applications. We implement the WT description to a general six-wave Hamiltonian system that contains two invariants, namely, energy and wave action. This enables the subsequent derivations for the evolutions equations of the one-mode amplitude probability density function (PDF) and kinetic equation (KE). Analysis of the stationary solutions of these equations are made with additional checks on their underlying assumptions for validity. Moreover, we derive a differential approximation model (DAM) to the KE for super-local wave interactions and investigate the possible occurrence of a fluctuation relation. We then consider these results in the context of two physical systems - Kelvin waves in quantum turbulence (QT) and optical wave turbulence (OWT). We discuss the role of Kelvin waves in decaying QT, and show that they can be described by six-wave interactions. We explicitly compute the interaction coefficients for the Biot-Savart equation (BSE) Hamiltonian and represent the Kelvin wave dynamics in the form of a KE. The resulting non-equilibrium Kolmogorov-Zakharov (KZ) solutions to the KE are shown to be non-local, thus a new non-local theory for Kelvin wave interactions is discussed. A local equation for the dynamics of Kelvin waves, the local nonlinear equation (LNE), is derived from the BSE in the asymptotic limit of one long Kelvin wave. Numerical computation of the LNE leads to an agreement with the nonlocal Kelvin wave theory. Finally, we consider 1D OWT. We present the first experimental implementation of OWT and provide a comparable decaying numerical simulation for verification. We show that 1D OWT is described by a six-wave process and that the inverse cascade state leads to the development of coherent solitons at large scales. Further investigation is conducted into the behaviour of solitons and their impact to the WT description. Analysis of the fluxes and intensity PDFs lead to the development of a wave turbulence life cycle (WTLC), explaining the coexistence between coherent solitons and incoherent waves. Additional numerical simulations are performed in non-equilibrium stationary regimes to determine if a pure KZ state can be realised.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Introductory programming: a systematic literature review

    Get PDF
    As computing becomes a mainstream discipline embedded in the school curriculum and acts as an enabler for an increasing range of academic disciplines in higher education, the literature on introductory programming is growing. Although there have been several reviews that focus on specific aspects of introductory programming, there has been no broad overview of the literature exploring recent trends across the breadth of introductory programming. This paper is the report of an ITiCSE working group that conducted a systematic review in order to gain an overview of the introductory programming literature. Partitioning the literature into papers addressing the student, teaching, the curriculum, and assessment, we explore trends, highlight advances in knowledge over the past 15 years, and indicate possible directions for future research

    A value-based comparison of the management of ambulatory respiratory diseases in walk-in clinics, primary care practices, and emergency departments : protocol for a multicenter prospective cohort study

    Get PDF
    Background: In Canada, 30%-60% of patients presenting to emergency departments are ambulatory. This category has been labeled as a source of emergency department overuse. Acting on the presumption that primary care practices and walk-in clinics offer equivalent care at a lower cost, governments have invested massively in improving access to these alternative settings in the hope that patients would present there instead when possible, thereby reducing the load on emergency departments. Data in support of this approach remain scarce and equivocal. Objective: The aim of this study is to compare the value of care received in emergency departments, walk-in clinics, and primary care practices by ambulatory patients with upper respiratory tract infection, sinusitis, otitis media, tonsillitis, pharyngitis, bronchitis, influenza-like illness, pneumonia, acute asthma, or acute exacerbation of chronic obstructive pulmonary disease. Methods: A multicenter prospective cohort study will be performed in Ontario and Québec. In phase 1, a time-driven activity-based costing method will be applied at each of the 15 study sites. This method uses time as a cost driver to allocate direct costs (eg, medication), consumable expenditures (eg, needles), overhead costs (eg, building maintenance), and physician charges to patient care. Thus, the cost of a care episode will be proportional to the time spent receiving the care. At the end of this phase, a list of care process costs will be generated and used to calculate the cost of each consultation during phase 2, in which a prospective cohort of patients will be monitored to compare the care received in each setting. Patients aged 18 years and older, ambulatory throughout the care episode, and discharged to home with one of the aforementioned targeted diagnoses will be considered. The estimated sample size is 1485 patients. The 3 types of care settings will be compared on the basis of primary outcomes in terms of the proportion of return visits to any site 3 and 7 days after the initial visit and the mean cost of care. The secondary outcomes measured will include scores on patient-reported outcome and experience measures and mean costs borne wholly by patients. We will use multilevel generalized linear models to compare the care settings and an overlap weights approach to adjust for confounding factors related to age, sex, gender, ethnicity, comorbidities, registration with a family physician, socioeconomic status, and severity of illness. Results: Phase 1 will begin in 2021 and phase 2, in 2023. The results will be available in 2025. Conclusions: The end point of our program will be for deciders, patients, and care providers to be able to determine the most appropriate care setting for the management of ambulatory emergency respiratory conditions, based on the quality and cost of care associated with each alternative

    Landsat 9 Thermal Infrared Sensor 2 Architecture and Design

    Get PDF
    The Thermal Infrared Sensor 2 (TIRS-2) will fly aboard the Landsat 9 spacecraft and leverages the Thermal Infrared Sensor (TIRS) design currently flying on Landsat 8. TIRS-2 will provide similar science data as TIRS, but is not a buildto-print rebuild due to changes in requirements and improvements in absolute accuracy. The heritage TIRS design has been modified to reduce the influence of stray light and to add redundancy for higher reliability over a longer mission life. The TIRS-2 development context differs from the TIRS scenario, adding to the changes. The TIRS-2 team has also learned some lessons along the way

    Common Variants at 9p21 and 8q22 Are Associated with Increased Susceptibility to Optic Nerve Degeneration in Glaucoma

    Get PDF
    Optic nerve degeneration caused by glaucoma is a leading cause of blindness worldwide. Patients affected by the normal-pressure form of glaucoma are more likely to harbor risk alleles for glaucoma-related optic nerve disease. We have performed a meta-analysis of two independent genome-wide association studies for primary open angle glaucoma (POAG) followed by a normal-pressure glaucoma (NPG, defined by intraocular pressure (IOP) less than 22 mmHg) subgroup analysis. The single-nucleotide polymorphisms that showed the most significant associations were tested for association with a second form of glaucoma, exfoliation-syndrome glaucoma. The overall meta-analysis of the GLAUGEN and NEIGHBOR dataset results (3,146 cases and 3,487 controls) identified significant associations between two loci and POAG: the CDKN2BAS region on 9p21 (rs2157719 [G], OR = 0.69 [95%CI 0.63–0.75], p = 1.86×10−18), and the SIX1/SIX6 region on chromosome 14q23 (rs10483727 [A], OR = 1.32 [95%CI 1.21–1.43], p = 3.87×10−11). In sub-group analysis two loci were significantly associated with NPG: 9p21 containing the CDKN2BAS gene (rs2157719 [G], OR = 0.58 [95% CI 0.50–0.67], p = 1.17×10−12) and a probable regulatory region on 8q22 (rs284489 [G], OR = 0.62 [95% CI 0.53–0.72], p = 8.88×10−10). Both NPG loci were also nominally associated with a second type of glaucoma, exfoliation syndrome glaucoma (rs2157719 [G], OR = 0.59 [95% CI 0.41–0.87], p = 0.004 and rs284489 [G], OR = 0.76 [95% CI 0.54–1.06], p = 0.021), suggesting that these loci might contribute more generally to optic nerve degeneration in glaucoma. Because both loci influence transforming growth factor beta (TGF-beta) signaling, we performed a genomic pathway analysis that showed an association between the TGF-beta pathway and NPG (permuted p = 0.009). These results suggest that neuro-protective therapies targeting TGF-beta signaling could be effective for multiple forms of glaucoma

    Genome-Wide Joint Meta-Analysis of SNP and SNP-by-Smoking Interaction Identifies Novel Loci for Pulmonary Function

    Get PDF
    corecore